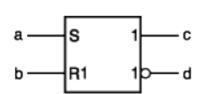

#### Illustrations

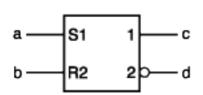
#### External logic states




| а | b | С           | d     |
|---|---|-------------|-------|
| 0 | 0 | uncha       | anged |
| 0 | 1 | 0           | 1     |
| 1 | 0 | 1           | 0     |
| 1 | 1 | unspecified |       |

#### External logic states

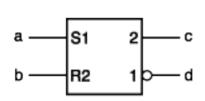



| а | b | c         | d |
|---|---|-----------|---|
| 0 | 0 | unchanged |   |
| 0 | 1 | 0         | 1 |
| 1 | 0 | 1         | 0 |
| 1 | 1 | 1         | 0 |

#### External logic states



| а | b | С         | d |
|---|---|-----------|---|
| 0 | 0 | unchanged |   |
| 0 | 1 | 0         | 1 |
| 1 | 0 | 1         | 0 |
| 1 | 1 | 0         | 1 |


### External logic states



|   |   | <b>b</b> | ١ .   | ٦     |
|---|---|----------|-------|-------|
| , | a | b        | С     | a     |
|   | 0 | 0        | uncha | anged |
|   | 0 | 1        | 0     | 1     |
|   | 1 | 0        | 1     | 0     |
|   | 1 | 1        | 1     | 1     |

The non-complementary output pattern in the last line of the truth table is only pseudo-stable. The simultaneous return of a and b to 0 produces on unforeseeable stable and complementary output pattern.

## External logic states



| а | b | С     | d     |
|---|---|-------|-------|
| 0 | 0 | uncha | anged |
| 0 | 1 | 0     | 1     |
| 1 | 0 | 1     | 0     |
| 1 | 1 | 0     | 0     |

The note with the preceding illustration applies.

# a — G1/2S — c b — G2/1R D— d

| а | b | С         | d |
|---|---|-----------|---|
| 0 | 0 | unchanged |   |
| 0 | 1 | 0         | 1 |
| 1 | 0 | 1         | 0 |
| 1 | 1 | unchanged |   |

External logic states

- 1 The use of the solidus is explained in A00289.
- 2 This example does not use the Sand R-dependencies, but completes the set of alternatives to the unspecified case and demonstrates the fact that S- and R-dependencies cannnot affect inputs.